3.11.4 \(\int \frac {\sqrt [4]{a+b x^4}}{x^2} \, dx\) [1004]

Optimal. Leaf size=73 \[ -\frac {\sqrt [4]{a+b x^4}}{x}-\frac {1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac {1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right ) \]

[Out]

-(b*x^4+a)^(1/4)/x-1/2*b^(1/4)*arctan(b^(1/4)*x/(b*x^4+a)^(1/4))+1/2*b^(1/4)*arctanh(b^(1/4)*x/(b*x^4+a)^(1/4)
)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {283, 338, 304, 209, 212} \begin {gather*} -\frac {1}{2} \sqrt [4]{b} \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )-\frac {\sqrt [4]{a+b x^4}}{x}+\frac {1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(1/4)/x^2,x]

[Out]

-((a + b*x^4)^(1/4)/x) - (b^(1/4)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/2 + (b^(1/4)*ArcTanh[(b^(1/4)*x)/(a +
 b*x^4)^(1/4)])/2

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 283

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Dist[b*n*(p/(c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 338

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rubi steps

\begin {align*} \int \frac {\sqrt [4]{a+b x^4}}{x^2} \, dx &=-\frac {\sqrt [4]{a+b x^4}}{x}+b \int \frac {x^2}{\left (a+b x^4\right )^{3/4}} \, dx\\ &=-\frac {\sqrt [4]{a+b x^4}}{x}+b \text {Subst}\left (\int \frac {x^2}{1-b x^4} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )\\ &=-\frac {\sqrt [4]{a+b x^4}}{x}+\frac {1}{2} \sqrt {b} \text {Subst}\left (\int \frac {1}{1-\sqrt {b} x^2} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )-\frac {1}{2} \sqrt {b} \text {Subst}\left (\int \frac {1}{1+\sqrt {b} x^2} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )\\ &=-\frac {\sqrt [4]{a+b x^4}}{x}-\frac {1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac {1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 73, normalized size = 1.00 \begin {gather*} -\frac {\sqrt [4]{a+b x^4}}{x}-\frac {1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac {1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)^(1/4)/x^2,x]

[Out]

-((a + b*x^4)^(1/4)/x) - (b^(1/4)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/2 + (b^(1/4)*ArcTanh[(b^(1/4)*x)/(a +
 b*x^4)^(1/4)])/2

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {\left (b \,x^{4}+a \right )^{\frac {1}{4}}}{x^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+a)^(1/4)/x^2,x)

[Out]

int((b*x^4+a)^(1/4)/x^2,x)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 82, normalized size = 1.12 \begin {gather*} \frac {1}{2} \, b^{\frac {1}{4}} \arctan \left (\frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{b^{\frac {1}{4}} x}\right ) - \frac {1}{4} \, b^{\frac {1}{4}} \log \left (-\frac {b^{\frac {1}{4}} - \frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{x}}{b^{\frac {1}{4}} + \frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{x}}\right ) - \frac {{\left (b x^{4} + a\right )}^{\frac {1}{4}}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="maxima")

[Out]

1/2*b^(1/4)*arctan((b*x^4 + a)^(1/4)/(b^(1/4)*x)) - 1/4*b^(1/4)*log(-(b^(1/4) - (b*x^4 + a)^(1/4)/x)/(b^(1/4)
+ (b*x^4 + a)^(1/4)/x)) - (b*x^4 + a)^(1/4)/x

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.54, size = 41, normalized size = 0.56 \begin {gather*} \frac {\sqrt [4]{a} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+a)**(1/4)/x**2,x)

[Out]

a**(1/4)*gamma(-1/4)*hyper((-1/4, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(1/4)/x^2, x)

________________________________________________________________________________________

Mupad [B]
time = 1.23, size = 40, normalized size = 0.55 \begin {gather*} -\frac {{\left (b\,x^4+a\right )}^{1/4}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},-\frac {1}{4};\ \frac {3}{4};\ -\frac {b\,x^4}{a}\right )}{x\,{\left (\frac {b\,x^4}{a}+1\right )}^{1/4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^4)^(1/4)/x^2,x)

[Out]

-((a + b*x^4)^(1/4)*hypergeom([-1/4, -1/4], 3/4, -(b*x^4)/a))/(x*((b*x^4)/a + 1)^(1/4))

________________________________________________________________________________________